Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dilead(II) trimercury(II) tetraoxide chromate $(\mathrm{VI}), \mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$

Wilhelm Klein, Jan Curda and Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
Correspondence e-mail: m.jansen@fkf.mpg.de
Received 17 December 2004
Accepted 21 April 2005
Online 13 May 2005
$\mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$ consists of $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra, linear $\mathrm{O}-$ $\mathrm{Hg}-\mathrm{O}$ dumbbells and divalent Pb atoms in [3+5]-coordination. The HgO_{2} dumbbells are condensed into $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ units and can be regarded as a section of the HgO structure. The $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ complex anions are connected by interstitial Pb^{2+} ions, while the $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra are isolated.

Comment

$\mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$ consists of three different structural building units, viz. $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra, anionic $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ strips and, connecting the latter, Pb^{2+} ions. The $\left[\mathrm{CrO}_{4}\right]^{2-}$ ion is only slightly distorted; all $\mathrm{Cr}-\mathrm{O}$ distances are identical within the 1σ limit, and the angles are close to the tetrahedral value.

All crystallographically independent Hg atoms are linearly coordinated by O atoms, and the $\mathrm{Hg}-\mathrm{O}$ distances decrease remarkably from the central $[2.094$ (9) and 2.097 (9) \AA] to the terminal bonds [2.006 (10) and 2.015 (10) \AA]. The $\mathrm{Hg}-\mathrm{O}-\mathrm{Hg}$ angles of 111.2 (4) and 114.7 (4) ${ }^{\circ}$ result in a zigzag shape of the $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ anion. The dihedral angle between the two terminal $\mathrm{O}-\mathrm{Hg}-\mathrm{O}$ dumbbells is $c a 0.9^{\circ}$, so all atoms are approximately coplanar. These characteristic $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ units represent a section of the HgO structure and are linked by Pb^{2+} ions, forming a three-dimensional framework (Figs. 1 and 2).
The two Pb atoms exhibit a stereochemically active lone pair; each atom has three close O -atom contacts on one side [Pb1 2.246 (10)-2.512 (11) \AA and Pb 22.309 (10)-2.380 (9) \AA] and five considerably more remote neighbours on the other [Pb1 2.868 (15)-3.610 (10) \AA and Pb 22.761 (12)-3.228 (11) \AA; Table 1 and Fig. 3]. Considered as pyramidal PbO_{3} units, the polyhedra containing Pb 2 form dimers via common $\mathrm{O} 8-\mathrm{O} 8^{\text {iii }}$ [symmetry code: (iii) $2-x,-y, 2-z$] edges, while those containing Pb 1 are arranged as infinite chains along [001], linked via common vertices. The close contacts are formed exclusively with O atoms of the $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ group, each coordinating to three heavy metal cations (O 5 and $\mathrm{O} 8: 1 \mathrm{Hg}+2 \mathrm{~Pb}$; O6 and $\mathrm{O} 7: 2 \mathrm{Hg}+1 \mathrm{~Pb}$).

Atoms O1-O4, belonging to the $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra, find their closest Hg and Pb neighbours at distances of 2.576 (12) $(\mathrm{O} 1-\mathrm{Hg} 2)$ and $2.761(12) \AA(\mathrm{O} 4-\mathrm{Pb} 2)$, respectively, i.e.
atoms $\mathrm{O} 1-\mathrm{O} 4$ reside in the second coordination sphere of Hg and Pb atoms only.

The title compound is closely related to $\mathrm{Pb}_{2}\left(\mathrm{HgO}_{2}\right)\left(\mathrm{CrO}_{4}\right)$ (Klein et al., 2002), which was found under similar synthetic conditions. The crystal structure also consists of isolated

Figure 1
A perspective view of $\mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$ along [001], showing Pb atoms, $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ units and $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra.

Figure 2

The environment of the $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ unit, showing the six-coordinate PbO_{3} pyramids and a $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedron. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) $x+1, y, z ;$ (ii) $x+1$, $-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+2,-y,-z+2$; (iv) $x-1, y, z ;$ (v) $-x+1,-y,-z+2$; (vi) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (vii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (viii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$.]

Figure 3
The [3+5]-coordination of the two Pb^{2+} ions; dashed bonds are longer than $2.52 \AA$. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) $x+1, y, z$; (ii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+2$, $-y,-z+2$; (vi) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (vii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ix) $-x+1,-y,-z+1$; (x) $-x+2,-y,-z+1$; (xi) $x-1,-y+\frac{1}{2}, z+\frac{1}{2}$.]
$\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra, $\left[\mathrm{HgO}_{2}\right]^{2-}$ dumbbells and Pb^{2+} ions in an O -atom $[3+5]$-coordination with closest contacts to O atoms that are not bonded to chromium. Both compounds described here belong to the series of $\mathrm{Pb}_{2}\left(\mathrm{Hg}_{n} \mathrm{O}_{n+1}\right)\left(\mathrm{CrO}_{4}\right)$ composition and differ in the chain length of the $\mathrm{Hg}_{n} \mathrm{O}_{n+1}$ fragment. Another formal member of this family, with $n=0$, the naturally occurring phoenicochroit, $\mathrm{Pb}_{2} \mathrm{OCrO}_{4}$ (Williams et al., 1970), was also observed in our experiments.

Inspecting oxochromate(VI) compounds containing divalent Pb and/or Hg , such as PbCrO_{4} (Quareni \& de Pieri, 1965), HgCrO_{4} (Stalhandske, 1978), $\mathrm{Hg}_{3} \mathrm{CrO}_{6}$ (Hansen et al., 1995) and the compounds mentioned above, general structural trends become obvious. With increasing amounts of the heavy metal cations, the $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra tend to separate from Hg -containing entities and the number of short $\mathrm{Pb}-\mathrm{OCrO}_{3}$ contacts is subsequently reduced. As a second structural constant besides the $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra, Hg appears in a linear coordination in all compounds mentioned here, and structural motifs strongly reminiscent of the HgO structure are formed, i.e. $\left[\mathrm{HgO}_{2}\right]^{2-}$ dumbbells in $\mathrm{Pb}_{2}\left(\mathrm{HgO}_{2}\right)\left(\mathrm{CrO}_{4}\right)$, $\left[\mathrm{Hg}_{3} \mathrm{O}_{4}\right]^{2-}$ zigzag chains in the title compound and twodimensional networks in $\mathrm{Hg}_{3} \mathrm{CrO}_{6}$. The Pb^{2+} ion, mostly occurring in an O -atom $[3+x]$-coordination $(x \simeq 5)$, exhibits the highest flexibility in its coordination sphere among the present cations, and separates and shortens the $[\mathrm{HgO}]_{n}$ chains and fragments.

Experimental

Single crystals of $\mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$ were obtained at elevated oxygen pressures using steel autoclaves. In a typical experiment, $\mathrm{HgO}, \mathrm{PbO}$ and CrO_{3} were used as starting materials, and distilled water (2 ml) was added to accelerate the reaction. The ground mixture, placed in gold crucibles, was annealed for 120 h at 753 K and 12 MPa oxygen pressure in stainless steel autoclaves (Linke \& Jansen, 1997).

Crystal data

$\mathrm{Pb}_{2}\left(\mathrm{Hg}_{3} \mathrm{O}_{4}\right)\left(\mathrm{CrO}_{4}\right)$	$D_{x}=8.417 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1196.15$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 17644
$a=6.5408(9) \AA$	\quad reflections
$b=21.947(3) \AA$	$\theta=0.0-44.2^{\circ}$
$c=6.9672(10) \AA$	$\mu=85.28 \mathrm{~mm}^{-1}$
$\beta=109.304(11)^{\circ}$	$T=293(2) \mathrm{K}$
$V=943.9(2) \AA^{\circ}$	Block, red
$Z=4$	$0.2 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: integration
(X-SHAPE; Stoe \& Cie, 2002)
$T_{\text {min }}=0.003, T_{\text {max }}=0.023$
18557 measured reflections 2292 independent reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.079 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=3.79 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-4.97 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00073 (10)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cr}-\mathrm{O} 1$	1.661 (12)	$\mathrm{Pb} 1-\mathrm{O}^{\text {vi }}$	2.868 (15)
$\mathrm{Cr}-\mathrm{O} 2$	1.656 (13)	$\mathrm{Pb} 1-\mathrm{Of}^{\text {vii }}$	2.910 (11)
$\mathrm{Cr}-\mathrm{O} 3$	1.675 (12)	$\mathrm{Pb} 1-\mathrm{O} 1^{\text {vi }}$	2.928 (13)
$\mathrm{Cr}-\mathrm{O} 4$	1.661 (11)	$\mathrm{Pb} 1-\mathrm{O} 2^{\text {xi }}$	2.943 (14)
$\mathrm{Hg} 1-\mathrm{O} 5$	2.015 (10)	$\mathrm{Pb} 1-\mathrm{O}^{\text {vi }}$	3.610 (10)
Hg1-O6	2.022 (9)	$\mathrm{Pb} 2-\mathrm{O} 8$	2.309 (10)
Hg2-O6	2.094 (9)	$\mathrm{Pb} 2-\mathrm{O} 8^{\text {iii }}$	2.349 (11)
$\mathrm{Hg} 2-\mathrm{O} 7$	2.097 (9)	$\mathrm{Pb} 2-\mathrm{O} 7^{\text {i }}$	2.380 (9)
Hg3-O7	2.029 (10)	Pb2-O4	2.761 (12)
Hg3-O8	2.006 (10)	$\mathrm{Pb} 2-\mathrm{O} 1^{\text {ix }}$	2.771 (13)
$\mathrm{Pb} 1-\mathrm{O} 5^{\text {i }}$	2.246 (10)	$\mathrm{Pb} 2-\mathrm{O} 4^{\mathrm{x}}$	2.972 (14)
$\mathrm{Pb} 1-\mathrm{O} 6$	2.367 (10)	$\mathrm{Pb} 2-\mathrm{O} 2^{\mathrm{x}}$	3.202 (13)
$\mathrm{Pb} 1-\mathrm{O} 5^{\text {ii }}$	2.512 (11)	$\mathrm{Pb} 2-\mathrm{O}^{\text {ix }}$	3.228 (11)
$\mathrm{O} 5-\mathrm{Hg} 1-\mathrm{O} 6$	176.0 (5)	$\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	72.3 (3)
$\mathrm{O} 6-\mathrm{Hg} 2-\mathrm{O} 7$	175.6 (4)	$\mathrm{O} 8-\mathrm{Pb} 2-\mathrm{O} 8^{\text {iii }}$	75.7 (4)
$\mathrm{O} 7-\mathrm{Hg} 3-\mathrm{O} 8$	176.4 (4)	$\mathrm{O} 8-\mathrm{Pb} 2-\mathrm{O} 7^{\mathrm{i}}$	81.3 (4)
O5 ${ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 6$	80.9 (3)	$\mathrm{O} 8^{\text {iii }}-\mathrm{Pb} 2-\mathrm{O} 7^{\text {i }}$	91.9 (4)
$\mathrm{O} 5{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 5^{\text {ii }}$	100.0 (3)		

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+2,-y,-z+2$; (vi) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (vii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ix) $-x+1,-y,-z+1$; (x) $-x+2,-y,-z+1$; (xi) $x-1,-y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection and cell refinement: X-AREA (Stoe \& Cie, 2002); data reduction: $X-R E D$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001).

The authors thank Dr Martin Panthöfer for data recording.

[^0]
References

Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Hansen, T., Müller-Buschbaum, H. \& Walz, L. (1995). Z. Naturforsch. Teil B, 50, 47-50.
Klein, W., Curda, J., Friese, K. \& Jansen, M. (2002). Acta Cryst. C58, i23-i24. Linke, C. \& Jansen, M. (1997). Z. Anorg. Allg. Chem. 623, 1441-1446.
Quareni, S. \& de Pieri, R. (1965). Acta Cryst. 19, 287-289.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stålhandske, C. (1978). Acta Cryst. B34, 1968-1969.
Stoe \& Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Williams, S. A., McLean, W. J. \& Anthony, J. W. (1970). Am. Mineral. 55, 784 792.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1488). Services for accessing these data are described at the back of the journal.

