Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dilead(II) trimercury(II) tetraoxide chromate(VI), Pb₂(Hg₃O₄)(CrO₄)

Wilhelm Klein, Jan Curda and Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Correspondence e-mail: m.jansen@fkf.mpg.de

Received 17 December 2004 Accepted 21 April 2005 Online 13 May 2005

 $Pb_2(Hg_3O_4)(CrO_4)$ consists of $[CrO_4]^{2-}$ tetrahedra, linear O-Hg-O dumbbells and divalent Pb atoms in [3+5]-coordination. The HgO₂ dumbbells are condensed into $[Hg_3O_4]^{2-}$ units and can be regarded as a section of the HgO structure. The $[Hg_3O_4]^{2-}$ complex anions are connected by interstitial Pb²⁺ ions, while the $[CrO_4]^{2-}$ tetrahedra are isolated.

Comment

 $Pb_2(Hg_3O_4)(CrO_4)$ consists of three different structural building units, *viz*. $[CrO_4]^{2-}$ tetrahedra, anionic $[Hg_3O_4]^{2-}$ strips and, connecting the latter, Pb^{2+} ions. The $[CrO_4]^{2-}$ ion is only slightly distorted; all Cr–O distances are identical within the 1σ limit, and the angles are close to the tetrahedral value.

All crystallographically independent Hg atoms are linearly coordinated by O atoms, and the Hg–O distances decrease remarkably from the central [2.094 (9) and 2.097 (9) Å] to the terminal bonds [2.006 (10) and 2.015 (10) Å]. The Hg–O–Hg angles of 111.2 (4) and 114.7 (4)° result in a zigzag shape of the $[Hg_3O_4]^{2-}$ anion. The dihedral angle between the two terminal O–Hg–O dumbbells is *ca* 0.9°, so all atoms are approximately coplanar. These characteristic $[Hg_3O_4]^{2-}$ units represent a section of the HgO structure and are linked by Pb²⁺ ions, forming a three-dimensional framework (Figs. 1 and 2).

The two Pb atoms exhibit a stereochemically active lone pair; each atom has three close O-atom contacts on one side [Pb1 2.246 (10)–2.512 (11) Å and Pb2 2.309 (10)–2.380 (9) Å] and five considerably more remote neighbours on the other [Pb1 2.868 (15)–3.610 (10) Å and Pb2 2.761 (12)–3.228 (11) Å; Table 1 and Fig. 3]. Considered as pyramidal PbO₃ units, the polyhedra containing Pb2 form dimers *via* common O8–O8ⁱⁱⁱ [symmetry code: (iii) 2 - x, -y, 2 - z] edges, while those containing Pb1 are arranged as infinite chains along [001], linked *via* common vertices. The close contacts are formed exclusively with O atoms of the $[Hg_3O_4]^{2-}$ group, each coordinating to three heavy metal cations (O5 and O8: 1 Hg + 2 Pb; O6 and O7: 2 Hg + 1 Pb).

Atoms O1–O4, belonging to the $[CrO_4]^{2-}$ tetrahedra, find their closest Hg and Pb neighbours at distances of 2.576 (12) (O1–Hg2) and 2.761 (12) Å (O4–Pb2), respectively, *i.e.* atoms O1–O4 reside in the second coordination sphere of Hg and Pb atoms only.

The title compound is closely related to $Pb_2(HgO_2)(CrO_4)$ (Klein *et al.*, 2002), which was found under similar synthetic conditions. The crystal structure also consists of isolated

A perspective view of $Pb_2(Hg_3O_4)(CrO_4)$ along [001], showing Pb atoms, $[Hg_3O_4]^{2-}$ units and $[CrO_4]^{2-}$ tetrahedra.

Figure 2

The environment of the $[Hg_3O_4]^{2-}$ unit, showing the six-coordinate PbO₃ pyramids and a $[CrO_4]^{2-}$ tetrahedron. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) x + 1, y, z; (ii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x + 2, -y, -z + 2; (iv) x - 1, y, z; (v) -x + 1, -y, -z + 2; (vi) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (viii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (viii) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$]

Figure 3

The [3+5]-coordination of the two Pb²⁺ ions; dashed bonds are longer than 2.52 Å. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) x + 1, y, z; (ii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x + 2, -y, -z + 2; (vi) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (vii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ix) -x + 1, -y, -z + 1; (x) -x + 2, -y, -z + 1; (xi) x - 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.]

 $[CrO_4]^{2-}$ tetrahedra, $[HgO_2]^{2-}$ dumbbells and Pb²⁺ ions in an O-atom [3+5]-coordination with closest contacts to O atoms that are not bonded to chromium. Both compounds described here belong to the series of Pb₂(Hg_nO_{n+1})(CrO₄) composition and differ in the chain length of the Hg_nO_{n+1} fragment. Another formal member of this family, with n = 0, the naturally occurring phoenicochroit, Pb₂OCrO₄ (Williams *et al.*, 1970), was also observed in our experiments.

Inspecting oxochromate(VI) compounds containing divalent Pb and/or Hg, such as PbCrO₄ (Quareni & de Pieri, 1965), HgCrO₄ (Stalhandske, 1978), Hg₃CrO₆ (Hansen et al., 1995) and the compounds mentioned above, general structural trends become obvious. With increasing amounts of the heavy metal cations, the $[CrO_4]^{2-}$ tetrahedra tend to separate from Hg-containing entities and the number of short Pb-OCrO₃ contacts is subsequently reduced. As a second structural constant besides the [CrO₄]²⁻ tetrahedra, Hg appears in a linear coordination in all compounds mentioned here, and structural motifs strongly reminiscent of the HgO structure are formed, *i.e.* $[HgO_2]^{2-}$ dumbbells in Pb₂(HgO₂)(CrO₄), $[Hg_3O_4]^{2-}$ zigzag chains in the title compound and twodimensional networks in Hg₃CrO₆. The Pb²⁺ ion, mostly occurring in an O-atom [3+x]-coordination ($x \simeq 5$), exhibits the highest flexibility in its coordination sphere among the present cations, and separates and shortens the [HgO]_n chains and fragments.

Experimental

Single crystals of $Pb_2(Hg_3O_4)(CrO_4)$ were obtained at elevated oxygen pressures using steel autoclaves. In a typical experiment, HgO, PbO and CrO₃ were used as starting materials, and distilled water (2 ml) was added to accelerate the reaction. The ground mixture, placed in gold crucibles, was annealed for 120 h at 753 K and 12 MPa oxygen pressure in stainless steel autoclaves (Linke & Jansen, 1997).

Crystal data

$Pb_2(Hg_3O_4)(CrO_4)$	$D_x = 8.417 \text{ Mg m}^{-3}$
$M_r = 1196.15$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 17 644
a = 6.5408 (9) Å	reflections
b = 21.947 (3) Å	$\theta = 0.0-44.2^{\circ}$
c = 6.9672 (10) Å	$\mu = 85.28 \text{ mm}^{-1}$
$\beta = 109.304 \ (11)^{\circ}$	T = 293 (2) K
V = 943.9 (2) Å ³	Block, red
Z = 4	$0.2 \times 0.2 \times 0.2$ mm

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: integration (X-SHAPE; Stoe & Cie, 2002) $T_{\min} = 0.003, T_{\max} = 0.023$ 18 557 measured reflections 2292 independent reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.079P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.045$ where $P = (F_o^2 + 2F_c^2)/3$
 $wR(F^2) = 0.119$ $(\Delta/\sigma)_{max} < 0.001$

 S = 1.01 $\Delta\rho_{max} = 3.79$ e Å⁻³

 2292 reflections
 $\Delta\rho_{min} = -4.97$ e Å⁻³

 128 parameters
 Extinction correction: SHELXL97

 Extinction coefficient: 0.00073 (10)

Table 1

Selected geometric parameters (Å, °).

Cr-01	1.661 (12)	Pb1-O3 ^{vi}	2.868 (15)
Cr-O2	1.656 (13)	Pb1-O6 ^{vii}	2.910 (11)
Cr-O3	1.675 (12)	$Pb1 - O1^{vi}$	2.928 (13)
Cr-O4	1.661 (11)	$Pb1-O2^{xi}$	2.943 (14)
Hg1-O5	2.015 (10)	$Pb1 - O7^{vi}$	3.610 (10)
Hg1-O6	2.022 (9)	Pb2-O8	2.309 (10)
Hg2-O6	2.094 (9)	Pb2-O8 ⁱⁱⁱ	2.349 (11)
Hg2-O7	2.097 (9)	$Pb2-O7^{i}$	2.380 (9)
Hg3-O7	2.029 (10)	Pb2-O4	2.761 (12)
Hg3-O8	2.006 (10)	Pb2-O1 ^{ix}	2.771 (13)
Pb1-O5 ⁱ	2.246 (10)	$Pb2-O4^{x}$	2.972 (14)
Pb1-O6	2.367 (10)	$Pb2-O2^{x}$	3.202 (13)
Pb1-O5 ⁱⁱ	2.512 (11)	Pb2-O7 ^{ix}	3.228 (11)
O5-Hg1-O6	176.0 (5)	O6–Pb1–O5 ⁱⁱ	72.3 (3)
O6-Hg2-O7	175.6 (4)	O8-Pb2-O8 ⁱⁱⁱ	75.7 (4)
O7-Hg3-O8	176.4 (4)	O8-Pb2-O7 ⁱ	81.3 (4)
O5 ⁱ -Pb1-O6	80.9 (3)	O8 ⁱⁱⁱ -Pb2-O7 ⁱ	91.9 (4)
O5 ⁱ -Pb1-O5 ⁱⁱ	100.0 (3)		

2016 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.138$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = -8 \rightarrow 8$

 $l = -9 \rightarrow 9$

 $k = -28 \rightarrow 28$

Symmetry codes: (i) x + 1, y, z; (ii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 2, -y, -z + 2; (vi) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ix) -x + 1, -y, -z + 1; (x) -x + 2, -y, -z + 1; (xi) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection and cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001).

The authors thank Dr Martin Panthöfer for data recording.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1488). Services for accessing these data are described at the back of the journal.

References

- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Hansen, T., Müller-Buschbaum, H. & Walz, L. (1995). Z. Naturforsch. Teil B, **50**, 47–50.
- Klein, W., Curda, J., Friese, K. & Jansen, M. (2002). Acta Cryst. C58, i23-i24. Linke, C. & Jansen, M. (1997). Z. Anorg. Allg. Chem. 623, 1441–1446.
- Quareni, S. & de Pieri, R. (1997). Z. Anorg. Aug. Chem. 023, 1 Quareni, S. & de Pieri, R. (1965). Acta Cryst. 19, 287–289.
- Sheldrick, G. M. (1990). Acta Cryst. A**46**, 467–473.
- Sheldrick, G. M. (1990). *Alta Cryst.* A**40**, 407–475. Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany.
- Stålhandske, C. (1978). Acta Cryst. B34, 1968–1969.
- Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Williams, S. A., McLean, W. J. & Anthony, J. W. (1970). Am. Mineral. 55, 784– 792.